WWwWw.aging-us.com AGING 2025, Vol. 17, Advance

AUTHOR QUERIES

1. We have found that Keywords mismatch between manuscript and submission site. So, we have captured from
manuscript. Could you please check and confirm?

2. We have found that Figure 3 labels (E-L) are not alphabetical order in the figure legend. Could you please check
and re-order the labels appropriately?
We have found that Figure 4 is very poor quality (i.e., A part only). Could you please check and updated image?

4. We have found that References [86, 87] callouts are missing in the manuscript. Could you please check and
provide?

5. We have found that Supplementary Figure 1 label (H) is missing figure legend. Could you please check and
provide?

6. We have found that Supplementary Figure 1 labels (A—G) are not alphabetical order in the figure legend. Could
you please check and re-order the labels appropriately?

7. We have found that Supplementary Figure 4 labels (A—H) are not alphabetical order in the figure legend. Could
you please check and re-order the labels appropriately?
We have found that Supplementary Figure 5 is very poor quality. Could you please check and updated image?

9. We have found that Supplementary Data 1 caption (i.e., Title) missing. Could you please check and provide?

www.aging-us.com AGING



www.aging-us.com

AGING 2025, Vol. 17, Advance

Research Paper
Infusion of blood from young and old mice modulate amyloid

pathology

Matias Pizarro®?*, Ruben Gomez-Gutierrez*”, Ariel Caviedes?, Catalina Valdes?, Ute Woehlbier?,
Cristian Vargas®, Mauricio Hernandez®, Claudia Duran-Aniotz?, Rodrigo Morales>*®

!Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibafiez, Santiago, Chile

2Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago,
Chile

3Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
“Center for Integrative Biology (CIB), Universidad Mayor, Santiago, Chile

SDivision of Biotechnology, MELISA Institute, San Pedro de la Paz, Bio-Bio, Chile

8Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
*Equal contribution

Correspondence to: Claudia Duran-Aniotz, Rodrigo Morales; email: Claudia.Duran@uai.cl, Rodrigo.MoralesLoyola@uth.tmc.edu
Keywords: Alzheimer’s disease, amyloid-B, neurodegeneration, protein misfolding, blood infusion, therapeutic targets
Received: August 12, 2024 Accepted: July 30, 2025 Published:

Copyright: © 2025 Pizarro et al. This is an open access article distributed under the terms of the Creative Commons
Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

ABSTRACT

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the accumulation of misfolded
proteins in the brain. Recently, the impact of blood components in the progression of this disease has come to
attention. This study investigates the effects of infusing blood from young and old wild-type mice into
transgenic mice that model AD brain amyloidosis. Impaired memory and AB accumulation were observed in
mice infused with blood from old donors. A proteomic analysis in the brain of these mice identified alterations
in components related to synaptogenesis and the endocannabinoid system. The a262 protein, associated with
neuronal calcium regulation, was validated as a possible mediator of the observed effects. This study highlights
the influence of blood in AD pathology and the identification of potential therapeutic targets.

INTRODUCTION

Alzheimer’s disease (AD) is a progressive and
devastating neurodegenerative disease that affects older
individuals. AD is pathologically characterized by the
accumulation of misfolded amyloid-f (AP) and tau
proteins in the brain [1]. Notably, misfolded Ap
peptides are considered important pathological
mediators in AD due to their intrinsic toxicity and
profuse extracellular deposition in senile, diffuse, and
vascular plaques [2]. From a pathological standpoint,
AP aggregates are considered the earliest abnormality in
AD, triggering subsequent changes leading to
neurodegeneration and disease onset [3, 4]
Experimental evidence and data collected from human

subjects strongly suggest that the accumulation of
misfolded AP triggers tau pathology, synaptic
dysfunction, neuronal death, and cognitive decline [5,
6]. Among the diverse array of misfolded AP species in
the AD brain, oligomers are linked with initial seeding
stages [7, 8] and enhanced toxic activities [9].

For many years, AP aggregates were believed to be
confined in the brain [10]. However, some studies
strongly suggest their presence in peripheral tissues,
such as the retina, heart, skin, blood wvessels, and
gastrointestinal  tract [11-14]. These peripheral
aggregates have gained increasing attention in AD
research as they may contribute to the spread and
dissemination of amyloid pathology [12, 15]. The
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repercussions of peripheral AP accumulation are
potentially multifaceted as evidence indicates that they
can contribute to the development of AD through
several mechanisms [16]. Therefore, the presence of AP
in peripheral tissues and circulation may contribute to
disrupt peripheral clearance mechanisms, leading to
increased AP levels in the brain and contributing to the
development of brain amyloidosis [17]. Along this line,
the concept of blood based AP clearance has emerged as
a therapeutic strategy [18]. Some studies have found
that AP clearance in the periphery can substantially
reduce AP accumulation in the brain [16, 19, 20].
Notably, the implementation of plasma albumin
exchange has demonstrated a marked reduction in Af
burden in AD patients, accompanied by improvements
in AD-related cognitive function [21-23]. Furthermore,
alternative techniques such as hemodialysis and
peritoneal dialysis have also shown promise in
decreasing AP levels in brain [16, 19, 24]. These
findings underscore the diverse approaches that
leverage blood-based mechanisms for AP clearance,
providing valuable insights for the development of
effective therapeutic interventions [25, 26].

In the context of blood-based strategies to treat AD,
several studies have investigated the potential benefits
or detrimental effects of young and old blood donors on
aging. These studies have described significant effects
in blood recipients, suggesting that the factors carried
by young and old blood can modulate biological
functions in beneficial or detrimental manners [27-30].
Initial studies involving heterochronic parabiosis
reported notable beneficial changes at systemic levels in
old animals, strongly suggesting the presence of
regenerative factors in young blood [31]. Considering
this and other data, young blood became the focal point
of numerous animal and human studies, delving into its
potential benefits for brain health and aging [31-33].
Recent studies have shown that the blood from young
mice provides therapeutic benefits relevant to aging and
brain diseases. For example, infusions of young blood
can reverse the effects of brain aging at the synaptic
level, increase dendritic spine density and plasticity in
the hippocampus, and improve age-related cognitive
impairments [34]. Also, plasma from young wild type
mice reduces phosphorylated tau and tau tangles in the
brain [35]. Likewise, the introduction of young blood to
aged animals, either through parabiosis or young plasma
infusion, induces a restoration in the levels of synaptic
and neuronal proteins, consequently improving memory
in aged mice [36, 37]. Moreover, a reduction in tau and
AP pathologies, coupled with diminished brain
inflammation, has been observed as a consequence of
similar treatments [38]. Another study using whole
blood exchange from young wild type mice into
transgenic mice from 3 to 13 months-old shows a

reduction in AP burden and memory improvement [39].
Interestingly, the authors found a persistent effect as
recorded up to 17 months of treatment [40].

Despite the above-mentioned evidence, the impact of
old blood transfusion on AD pathology remains
understudied. One study described that plasma and
platelets from aged APP/PS1 mice increased brain A
deposition and learning/memory deficits when infused
into younger animals. In addition, the introduction of
aged platelets elevated Ap1-40, AB1-42, and tau protein
levels in the brain of treated mice [41]. Another study,
using heterochronic blood exchange, showed that aged
mouse blood induces aging phenotype in younger mice;
however, brain senescence parameters were not altered
[31, 42]. Particularly, our group infused young Tg2576
transgenic mice (transgenic mice expressing human
amyloid precursor protein (APP)) with whole blood or
plasma from older Tg2576 mice, which resulted in
increased brain amyloidosis and neuroinflammation in
the recipient mice [41]. Likewise, the intravenous
administration of purified AP aggregates sped up
amyloid pathology and triggered neuropathological
changes, supporting the idea that bloodborne AP seeds
are capable of triggering neuropathological changes [13,
43]. Interestingly, one of these studies [41] did not show
increases in amyloid pathology when young mice were
infused with blood from old wild type mice. However,
it is relevant to note that these mice received limited
(either one or two) doses of low-volume blood
infusions.

In summary, most published studies in this area have
focused on the potential therapeutic effects of young
blood infusion to treat AD. However, few studies have
examined the potential detrimental effects of old blood
on brain amyloidosis, and even fewer have explored the
impact of blood from wild type mice. Additionally, the
potential role of blood transfusion in modulating AP
accumulation, inflammation, and behavior, and its
subsequent impact on AD pathology, is an intriguing
avenue to explore. This study aimed to fill these gaps by
examining the effects of a long-term blood infusion
regime from young and old wild type donors into mice
that model brain amyloidosis. We also evaluated the
effect of these treatments in other associated detrimental
events including neuroinflammation and cognitive
decline.

RESULTS

Behavioral differences in Tg2576 mice infused with
blood from young or old wild-type donors

Multiple reports described that the administration of old
blood components can transfer aging associated traits to
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younger individuals [28, 42, 44, 45]. On the contrary,
the infusion of young blood is reported to provide
beneficial effects over multiple deleterious phenotypes
associated with aging [46, 47]. Considering that aging is
the main risk factor of AD [48, 49], the effect of aged or
young blood has been separately investigated in the
context of this neurological disorder [50, 51]. Here, we
aimed to study, in parallel, the effects that infusion of
blood from old or young donors exerted in an animal
model of brain amyloidosis. Specifically, we used
Tg2576 mice [52] for these experiments. Male and
female Tg2576 mice received blood infusions from
either old and young wild-type animals from the same
genetic background as described in the Materials and
Methods section. Briefly, Tg2576 mice received 30
blood infusions at weekly intervals and sacrificed at 12
months of age. Then, their brains were studied for
multiple  disease-associated parameters including
histopathological,  biochemical, and  proteomic
evaluations (Figure 1). Before sacrificing, treated mice
were tested for spatial memory using the Barnes maze
paradigm [38]. Mice subjected to this test showed
similar learning curves without significant differences
between the groups treated with young or old blood
(Figure 2A). Parameters for short-term memory (STM)

and long-term memory (LTM) were measured.
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Although no significant differences in latency for STM
and LTM were observed (Figure 2B, 2C), significant
differences were registered for the time spent in the
target quadrant (Figure 2D, 2E). The latter data indicate
that mice treated with old blood display more
difficulties remembering where the escape chamber was
located compared to subjects treated with blood from
young wild type mice. This data shows that old and
young blood can modulate spatial memory when
administered into a mouse model of AD.

Infusion of blood from old or young wild type
donors modulates amyloid pathology deposition in
Tg2576 mice

Histological staining using the anti-Af 4G8 antibody
and thioflavin S (ThS) was employed to observe
amyloid deposition in hippocampal and cortical brain
areas (Figure 3 and Supplementary Figure 1). These
brain regions were specifically studied as they are the
most affected in this mouse model and show increased
amyloid pathology over time (Supplementary Figure 2).
The extent of amyloid deposition using both analyses
was compared and quantified between mice injected
with young blood and those injected with blood from
old mice. The analysis was conducted in terms of the
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Figure 1. Schematic representation of the blood infusion regime (blood from old and young wild type mice into Tg2576
mice). Wild type mice aged 50-75 days (WT Young mice), and wild-type mice aged 443-532 days (WT Old mice) served as blood donors.
This blood was transfused to 120-day-old Tg2576 mice, which then underwent to weekly transfusions and sacrificed at 363—-366 days old.
Before sacrificing, mice were evaluated for spatial memory. Postmortem analyses included immunopathological, biochemical, and

proteomic evaluations of brain tissues.
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area reactive to AP deposits in each brain region per the
total analyzed area. The number of deposits in cortex
and hippocampus was also measured. When examining
amyloid depositions through 4G8 staining, a significant
increase of AP deposits was observed in the brain
cortices of Tg2576 mice treated with blood from old
wild-type mice compared to brain cortices of Tg2576
mice treated with young wild-type blood (Figure 3A—
3F). Interestingly, amyloid pathology in the hippocampi
of the same mice did not show significant changes
(Figure 3A, 3B, 3G-3J). We used similar analyses for
the ThS-stained brain slices (Supplementary Figure 1).
There, no significant differences between the groups
were observed, suggesting that the differences observed
in the mice’s brain cortices are mostly associated with
diffuse AP deposition. To further examine the impact of
blood infusion on brain amyloidosis, we quantified the

total levels of APs and APs levels in brain
homogenates from the same Tg2576 mice treated with
blood from young and old wild-type mice. This analysis
showed no significant differences between the groups
when measuring APaso, APas, or the APs/APso ratio
(Supplementary Figure 3). The discrepancy between
this analysis and that conducted by IHC further suggests
differences in the compactness of the AP plaques in
these animals. Studies to analyze this possibility (e.g.,
denaturation profiles using different concentrations of
denaturing agents, sucrose gradient fractionations, and
others) will be conducted as part of future studies.

We additionally analyzed whether blood infusion
altered other elements of the amyloid cascade.
Specifically, we questioned whether the production of
the amyloid-f precursor protein (APP) is affected by
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Figure 2. Spatial memory analyses of Tg2576 mice treated with blood from old and young wild type mice. The Barnes maze
test was applied to all mice included in this study. (A) Average latency to the escape chamber for the training trials sessions over 5 days, as
described in Materials and Methods. (B) Quantitative analysis of the short-term memory (STM) latency. (C) Quantitative analysis of the
long-term memory (LTM) latency. (D) Quantitative analysis of the STM time-in-quadrant parameter. (E) Quantitative analysis of the LTM
time-in-quadrant parameters. N = 6—7/group, (random mix of males and females; young donor group: 3M/3F; old donor group: 3M/4F). Sex
was not included as a variable in statistical analyses. Data values are expressed as means + SEM. Data in (A) were analyzed using
repeated/measures ANOVA. Data in (B) and (D) were analyzed using Student’s t-test. Data in (C) and (E) were analyzed using the Mann-

Whitney U-test. "p < 0.05.
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Figure 3. Evaluation of AB deposition and APP levels in Tg2576 mice treated with blood from old and young wild type mice.
Representative images of AR accumulation in the cortex and hippocampus (A, B). Higher magnification images of the cerebral cortex (C, D)
and hippocampus (G, H) are also shown. Tissue slices were probed with the 4G8 antibody as described in the Materials and Methods. Scale
bars: 1,000 um (A, B), 500 um (C, D, G, H). Quantitative analyses of AB burden and plague number in the cerebral cortex (E, F) and
hippocampus (1, J) are displayed. (K) Representative western blot image showing APP levels in brain homogenates from blood-treated mice
(upper panel), with actin used as a loading control (lower panel). (L) Densitometric quantification of APP levels shown in (K), expressed in
arbitrary units (UA). Data include 5-7 animals per group, (random mix of males and females; young donor group: 1-3M/2-3F; old donor
group: 1-3M/2-4F). Sex was not included as a variable in statistical analyses. Data values are expressed as mean + SEM. Molecular weight
markers (KDa) are indicated. Each lane represents one individual animal. Statistical analyses: Mann—-Whitney U-test for panels (E) and (L);
Student’s t-test for panels (F), (1), and (J). *p < 0.05, **p < 0.01.
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blood treatments. APP levels in the brain of mice
treated with blood from both young and old wild-type
donors were evaluated via western blotting using the
6E10 antibody. Interestingly, APP levels differed
significantly between both treatment groups, with a
notable increase in Tg2576 mice receiving old blood
compared to mice who received young blood (Figure
3K, 3L). Overall, our data suggests that the infusion of
blood from donors of different ages alters the deposition
of AP in the brain of Tg2576 mice in a region-specific
manner. These changes seem to be translated in the
degree of compactness of the aggregates and could be
related with the differential expression of APP in this
particular transgenic model.

Effect of blood infusion from wild type to Tg2576
mice in markers of glial cells

AD pathology is classically associated with brain
inflammation. This is easily identified by an increase in
activated astrocytes and reactive microglia [53]. We
analyzed the degree of glial activation in the brain of
mice treated with the different blood sources used in
this  experiment.  This  was  achieved by
immunohistochemical analyses targeting the glial
fibrillary acidic protein (GFAP, an astrocytes marker,
Supplementary Figure 4). A quantitative analysis of the
GFAP staining was performed to assess the density of
signal per unit area. No significant differences were
observed, suggesting that the blood infusion treatments
conducted in this study did not have an effect in the
activation of brain astroglial cells.

Infusion of blood from old or young wild type mice
induce dysregulation in proteins involved in synaptic
signaling pathways in Tg2576 subjects

To further investigate the possible causes leading to
spatial memory differences between Tg2576 mice
infused with old and young blood, proteomic analyses
were performed. For this purpose, brain homogenates
from Tg2576 animals subjected to the blood transfusion
regimen shown in Figure 1 were subjected to mass
spectrometry. Once the total proteins present in the
homogenate were identified, an analysis of the identified
quantifiable proteins was performed. This analysis
provided a total of 3,312 proteins (Figure 4A and
Supplementary Data 1). Based on the above results, an
analysis of Differentially Expressed Proteins (DEPs) was
performed in Tg2576 mice infused with blood from
either Old Wild Type and Young wild Type donors. This
yielded a total of 256 DEPs (Figure 4B). IPA pathway
analysis identified that several of the differentially
expressed proteins were predicted to affect the cAMP
mediated signaling (CAMK2A, PDE6D, CAMK2G,
AKAP10, BRAF, GRK2, PRKARIB), the

synaptogenesis  signaling  pathways (SYNGAPI,
CAMK2A, CACNA2D2, ITSN2, CNTNAP2, VAMP3,
CAMK?2G), and the neuronal endocannabinoid synaptic
pathway (MAPKY9, CACNA2D2, GNGI13, DAGLA,
FAAH, PRKARBIB, GRIAl) (Figure 4C4F and
Supplementary Figure 5). Based on the differentially
expressed proteins in each pathway, and considering
published evidence [54], candidate proteins for validation
were selected. One of these proteins included the
SYNGAPI1 protein. This is a Ras GTPase activator
protein, which exerts negative regulation on Ras, Rap and
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor trafficking to the postsynaptic
membrane. This regulation significantly impacts synaptic
plasticity and neuronal homeostasis [55, 56]. Another
candidate was CACNA2D?2, also known as alpha-2/delta
subunit of the voltage-dependent calcium channel
complex (0:282). This protein participates in the assembly
and localization of a protein complex in the cell
membrane, modulating calcium currents and the
activation/inactivation kinetics of the channel. These
processes regulate the entry of calcium ions into the cell
after membrane polarization, which has important
implications for neuronal function [57, 58]. Additional
candidates included BRAF (B-Raf proto-oncogene,
serine/threonine kinase, a protein within the RAF family
of serine/threonine kinases that regulates the MAP
kinase/ERK signaling pathway influencing cell division,
differentiation and secretion [59]), MAPK9 (mitogen-
activated protein kinase 9, a MAP kinase family member
that participates in integrating biochemical signals and
modulates proliferation, differentiation transcription
regulation and development [60]), and GRK2 (G protein-
coupled receptor kinase 2, a G protein-coupled receptor
kinase that phosphorylates beta-adrenergic receptors and
other substrates, including non-GPCR receptors,
cytoskeletal proteins, mitochondrial components, and
transcription factors [61]).

Brain homogenates from Tg2576 mice infused with
young or old blood were used for western blotting
analyses. While SYNGAP1, MAPK9 and GRK2 protein
levels showed no significant differences between the
two experimental conditions, the CACNA2D2 and
BRAF protein levels were found to be increased in in
the brains of Tg2576 mice injected with old blood
compared to Tg2576 mice injected with young blood
(Figure 4G—4P). These data suggest that young and old
blood infusion differentially affect synaptic plasticity
and neuronal homeostasis, as well as the regulation and
influx of cellular calcium ions in Tg2576 mice.

DISCUSSION

In this study, we used young and old wild type animals
as blood donors and Tg2576 mice at pre-pathological
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stages of brain amyloidosis as recipients to evaluate the
effect of blood infusion on brain pathology. Our results
showed an impairment in short- and long- term memory
in Tg2576 transgenic mice injected with plasma from
old wild type animals compared to those injected with
plasma from young subjects (Figure 2). Regarding A
pathology, we observed significant differences in
cortical regions where Tg2576 mice injected with the
blood of old donors accumulated more AP compared
with Tg2576 mice receiving young blood (Figure 3).
These findings agree with previous studies showing that
bloodborne factors present in old blood contribute to
increased cognitive decline and impairments in synaptic
plasticity [50, 62]. Along the same line, it is well
accepted that the administration of young blood has
positive effects over multiple events, including aging
and AD [63, 64]. Some studies have shown
considerable decreases in AP deposits in transgenic
animals treated with young blood [65, 66]. The above
discussed reports and the data presented in this article
indicate that old blood is attributed with factors that
contribute to the “aging” of the recipient. Among the
factors responsible for the aforementioned effects,
several inflammatory molecules have been described.
These include proinflammatory cytokines such as IL1p,
IL6, IL27 and TNFa, as well as chemokines such as
CCL11 and CCL27 [67]. In addition, molecules that
facilitate lymphocyte trafficking to inflammatory sites
in blood plasma have been identified [17, 68]. Another
risk factor in aging is the accumulation of senescent
uPAR+ cells, as these cells release proinflammatory
cytokines such as PAI-1 and TGFp, contributing to the
reduction of immune cell proliferation and the
transformation of niche cells into a proinflammatory
phenotype [69, 70]. These processes and their effectors
have been extensively studied [71]. All this information
suggests that bloodborne factors can play an important
role in AD pathology, with aged blood exerting a
deleterious effect and potentially exacerbating AD
pathology and reducing cognitive functions. It is
noteworthy that, in the present study, the increase in Ap
burden among transgenic mice infused with old blood
was exclusively detected employing the 4G8 antibody
(Figure 3). Notably, ThS staining or biochemical
evaluations by ELISA indicated no differences across
the experimental groups (Supplementary Figures 1 and
3). While both ThS and the 4G8 antibody are employed
to identify amyloid deposits, the dissimilarity in
detection could potentially be attributed to the nature of
the aggregates detected by each method. ThS binds to
compact amyloid fibrils [72], while the 4G8 antibody
specifically recognizes residues 17-24 within the AP
sequence [73]. Consequently, 4G8 can -effectively
differentiate between various forms of aggregates [74,
75]. Along this line, blood infusion seems to alter the
type of amyloid deposition in the brain. Specific for this

study, the infusion of blood from old wild type donors
to Tg2576 mice induced the accumulation of aggregates
in the cortex. The mechanisms dictating the specific
anatomical distribution of this phenotype will be
characterized in future studies. Unfortunately, the
biochemical analyses were not able to add more to these
observations as they were conducted using homogenates
prepared from the whole brain hemisphere.

Considering the cognitive and amyloid pathology
alterations in these mice, we evaluated other
components  classically associated with  brain
amyloidosis. In the first place, we analyzed whether
blood infusions altered glial markers. We observed no
differences at this level (Supplementary Figures 4 and
5), suggesting that other mechanisms were involved in
the modulation of pathological processes. Considering
this, we analyzed whether the expression of APP could
be altered in these mice, explaining the differences in
amyloid deposition between the groups. In fact,
significantly different increases in the presence of APP
were observed in the brains of Tg2576 mice treated
with the old blood (Figure 3), partially explaining the
different degrees of amyloid pathology. The relevance
of this finding to AD pathology is contentious,
considering that human APP in this specific transgenic
line is controlled by a non-physiological (prion protein)
promoter [76].

To further study the mechanisms associated with
pathological and memory cascades due to blood
infusion, we analyzed the protein components altered in
the mice included in this study. We conducted a
proteomic analysis and found dysregulated components
related to synaptogenesis and the endocannabinoid
system (Figure 4). Based on the literature and the
differentially expressed genes involved in AD, we
validated the 0202 protein through western blotting in
brain homogenates of transgenic mice injected with
young and old blood. As suggested by the proteomic
data, we found a significant increase in the levels of this
protein in the brains of Tg2576 mice treated with old
blood compared to Tg2576 mice treated with young
blood. The 0282 protein is part of the voltage-gated
calcium channels (VGCCs) protein complex, which
belongs to the group of voltage-gated ion channels
found in excitable cells, including neurons, allowing the
permeability of calcium [77, 78]. In addition, the 0252
protein plays a pivotal role in the regulation of calcium-
dependent signaling and neuronal excitability [75, 79].
Dysregulation of this protein has been linked to
pathological conditions like hearing loss contributing to
the facilitation of trans-synaptic alignment between
presynaptic Ca?" channels and postsynaptic AMPA
receptors [80]. Interestingly, the 0262 subunit of
VGCCs acts as a developmental switch that limits axon

www.aging-us.com

AGING



growth and regeneration. Removing or silencing
Cacna2d2, which encodes the 0262 subunit, increases
axon growth in vitro and enhances axon regeneration
after spinal cord injury in adult mice [81]. These
findings highlight the importance of understanding the
dysregulation of 0282 in neurodegenerative diseases
like AD, and the potential for therapeutic interventions
targeting AP pathology and promoting axon
regeneration. Additionally, our proteomic analysis
revealed a significant decrease in the levels of BRAF in
transgenic mice injected with young blood compared to
those receiving old blood. The dysregulation of this
protein has been linked with neurodegenerative
processes, including tau hyperphosphorylation and
neuronal dysfunction in AD [82, 83], as well as
microglial proliferation and neuroinflammation [84,
85]. The upregulation of BRAF in animals treated with
old blood compared to animals treated with young
blood may reflect a proinflammatory environment
characterized by increased cytokine activity, including
IL1B, YL6 and TNFo, which have been implicated in
synaptic dysfunction and neurodegeneration [88].
Previous studies have shown that young blood
modulates BRAF signaling by reducing microglial
activation and inflammatory pathways [89]. These
findings reinforce the influence of systemic factors on
intracellular signaling in AD and highlight BRAF as a
potential target for therapeutic strategies aimed at
mitigating neuroinflammation and synaptic impairment.

One limitation of our study involves the absence of a
separate, blood-untreated control group. While our
primary aim was to compare the effects of old versus
young blood infusions on Tg2576 mice, the lack of a
baseline reference group limits the interpretation of how
either treatment diverges from the natural pathological
progression in these animals. Future studies
incorporating an untreated Tg2576 group or ideally,
both transgenic and wild-type controls, will be essential
to better contextualize the impact of bloodborne factors
on disease progression. Despite this limitation, the
direct comparison between old- and young- blood-
treated groups provides valuable insights into the
potential age-dependent effects of circulating factors in
modulating AD-related pathology.

In summary, this study shows that blood from old and
young mice carry elements able to modulate AD
pathology and cognitive features. Interestingly, these
changes appear to be specific to the cortical region and
the type of deposits (compact vs. diffuse). Changes in
memory due to blood infusion seem to be mediated by
the 0262 protein as resolved through proteomic analyses
and validated by western blotting. The identification of
this protein mediating these events is a novel aspect of
this study. We agree that future studies must confirm

the proposed pathways. However, we believe that this
study unveils different mechanisms as those previously
described. The identification of neurodegeneration-
relevant factors in blood is currently an active area of
research with potential implications for the treatment of
AD and other pathological conditions associated with
aging. Further investigations are warranted to elucidate
the specific factors responsible for these effects and to
determine their potential translation to human
treatments.

MATERIALS AND METHODS
Transgenic mice

The experiments described in this article used Tg2576
[52] and wild type littermates. Tg2576 mice express the
human APP harboring the Swedish mutation. As a
consequence, these mice start developing AP deposits in
their brains at 8—9 months old and extensive presence of
senile plaques and neuroinflammation at 17 months of
age. Six to seven Tg2576 animals (random mixtures of
males and females) were used per experimental group.
Specifically, the group infused with blood from young
wild-type donors included 3 males and 3 females (50%
each), while the group infused with blood from old
wild-type donors included 3 males and 4 females
(42.9% males, 57.1% females). Although both sexes
were represented, sex was not considered a biological
variable in the statistical analyses due to the limited
sample size.

Intra-venous blood injections treatment

One hundred twenty-day old Tg2576 mice were
immobilized using a restriction cell and injected with
150 pL of blood from wild-type mice in the tail vein
using a '» cc 27G Y% tuberculin syringe (BD
Biosciences, Franklin Lakes, NJ, USA). Tg2576 mice
received 30 blood doses separated by 7-day intervals.
Blood treatments were performed using blood from
young (50-75 days old) or old (443-532) wild-type
mice. All treated animals were euthanized at 363-366
days old for subsequent analyses (Figure 1).

Barnes maze test

To determine the spatial memory status of the
experimental Tg2576 mice, the Barnes maze test was
used [90]. The Barnes maze setup used in this study
consisted of a circular table with 40 holes at their edges.
One of these holes includes an escape box to exit the
platform. The test is conducted by placing a single
mouse in the center of the platform. Later, the mouse is
stimulated with sound (loud clunk amplified by
speakers) and the bright room’s light so they look to
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hide by going into the escape box. The escape box
remains at the same position during the experiment and
distinctive markings across the room are employed
around the area as navigation cues. Mice were allowed
to explore the arena for 3 minutes, 3 times a day, for 5
days. If they failed to find the escape box, they were
gently directed to it by the researcher performing the
study. Memory was assessed on the 5th and 12th days.
The test on the 5th day reflects the short-term memory
(STM), whereas that on the 12th day represents the
long-term memory (LTM). Two parameters were
measured in this test: time in latency (time to enter into
the escaping chamber) and time in quadrant (percentage
of time mice spent in the quadrant where the escape
chamber is located).

Histological analyses of brain slices

Tissue staining was performed as previously described
[12, 19]. Briefly, brains were collected and one half of
the brain (left) was frozen at —80°C for biochemical
analyses, whereas the other half (right) was stored in
4% paraformaldehyde (PFA) and later paraffin
embedded and cut for histological studies. Serial 10
um-thick sections from groups of Tg2576 animals
transfused with old and young blood were processed for
histological analyses. For immunohistochemistry, serial
sections were deparaffinized and hydrated in decreasing
ethanol gradients. Endogenous peroxidase activity was
blocked with 3% H»0,/10% methanol in PBS for 20
min. In the case of needing antigenic unmasking of the
epitope, 85% v/v formic acid was used for 3 minutes.
The primary antibodies used were 4G8 Mouse IgG2b
(Biolegend, San Diego, CA, USA) (1:1000), anti-Iba-1
Rabbit/IgG (Minato-ku, Tokyo, Japan) (1:1000), and
anti-GFAP Rabbit/IgG (Abcam, Fremont, CA, USA)
(1:1000). For 4G8 and anti-GFAP primary antibodies,
the incubation time was overnight. In the case of Iba-1
detection, the incubation time was 48 hours. All
antibody incubations were performed at room
temperature, and the subsequent washings were
performed using PBS to remove antibody excess. A 2-
hour incubation was performed at room temperature
with corresponding secondary antibodies bound
horseradish peroxide (HRP): Goat anti-mouse (Jackson
ImmunoResearch West Grove, PA, USA) (1:1000), or
Goat anti-rabbit (Jackson ImmunoResearch, West
Grove, PA, USA) (1:1000). The peroxidase reaction
was visualized using the DAB Peroxidase Substrate Kit
(Vector Labs, Newark, CA, USA) following the
manufacturer’s instructions. Finally, the tissue slices
were subjected to dehydration in increasing ethanol
gradients  (70%-100%), xylene clearance, and
coversliped with ENTELLAN mounting solution
(Sigma-Aaldrich, Saint Louis, MO, USA). Additionally,
brain sections were incubated with Thioflavin-S (ThS)

solution (0.025% in 50% ethanol) for 10 min and
dehydrated and mounted with ENTELLAN or
Fluoromount (Electron Microscopy Sciences, Hatfield,
PA, USA). All images were visualized and captured
using Eclipse E200 series 624721 binocular
microscopes (Nikon Minato-ku, Tokyo, Japan) in bright
field and 488-555 nm filters. Between 4 and 5 tissue
slices per animal/staining, were taken every 10 slices
and used for image analyses and quantifications. Burden
was defined as the labeled area of the brain per total
area analyzed, and the results were expressed as
percentage. The region analyzed corresponded to the
entire cortical and hippocampal areas of the sections
studied. Histological staining and image analyses were
conducted using Fiji Image] Win-64 Software.

Quantification of Ap levels by ELISA

Brain tissue extracts from experimental groups were
processed following a standardized protein extraction
protocol [75]. Briefly, brain homogenates (10% w/v)
were prepared in PBS and centrifuged at 32,600 rpm for
1 hour at 4°C using a Sorvall WX100 ultracentrifuge
(Thermo Fisher, Norristown, PA, USA) equipped with a
Fiberlite fixed-angle rotor F50L-24x1.5 (Thermo
Fisher, Norristown, PA, USA). The supernatants were
saved and designated as the PBS-soluble fractions. The
remaining pellets were resuspended in 2% sodium
dodecyl sulphate (SDS) and homogenized by pipetting
followed by sonication in a water bath until complete
solubilization. After a second round of centrifugation
under the same conditions, the SDS-soluble fractions
were collected. The remaining pellets were then treated
with 70% formic acid (Fisher Scientific, Waltham, MA,
USA) and subjected to sonication (water bath) until full
dispersion. The FA-solubilized samples underwent
centrifugation for 30 minutes, and the resulting
supernatants were collected as FA fractions. To
neutralize acidity, FA fractions were diluted 1:20 in 1 M
Tris buffer pH 11 (Sigma Aldrich, Saint Louis, MO,
USA). AB4> and A4o peptides present in these samples
were measured by using ELISA AP4 and A4 Kkits
(Invitrogen, Carlsbad, CA, USA). ELISA was
performed following the manufacturer’s instructions.

Western blot analyses of brain homogenates

The western blot procedure was performed as described
elsewhere [91]. Briefly, brain homogenate samples were
lysed with PBS supplemented with a protease inhibitor
cocktail (Sigma-Aldrich, Saint Louis, MO, USA) plus a
phosphatase inhibitor cocktail (Sigma-Aldrich, Saint
Louis, MO, USA). Protein concentration was measured
using the Qubit dsDNA BR assay kit (Thermo Fisher,
Norristown, PA, USA) following the manufacturer’s
instructions. Twenty pg/uL of samples were loaded
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onto 10% polyacrylamide gels under denaturing
conditions (sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE)) and transferred to
nitrocellulose membranes. The membranes were
incubated with the following primary antibodies
overnight at 4°C in agitation: 6E10 mouse/IgGl
(Biolegend, San Diego, CA, USA) (1/500), 0232
(Cacna2d2) rabbit/IgG (Abcam, Fremont, CA, USA)
(1:1000), SynGAP1 rabbit/IgG (Abcam, Fremont, CA,
USA), BRAF rabbit/IgG (Proteintech, Rosemont, IL,
USA), INK2 (MAPK9) mouse/IgG (Origene, Rockville,
MD, USA), GRK2 mouse/IgG1 (Invitrogen, Carlsbad,
CA, USA), and B-Actin mouse/IgG2b (Cellsignal,
Danvers, MA, USA). Then, the following peroxidase-
conjugated secondary antibodies were used: Goat anti-
mouse (Jackson ImmunoResearch West Grove, PA,
USA)  (1:5000), Goat  anti-rabbit  (Jackson
ImmunoResearch West Grove, PA, USA) (1:5000).
Incubations with secondary antibodies were conducted
for 1 h at room temperature. Immunoreactivity was
visualized using the ECL Plus™ detection system (GE
Healthcare, Chicago, IL, USA). Densitometric
quantification of the bands was performed using the
Imagel Software.

Proteomic analysis

Brain homogenates from blood-treated Tg2576 mice
were sent to MELISA Institute (San Pedro de la Paz,
Bio Bio, Chile) for analysis. The detailed workflow was
performed according to the institute’s own parameters.
In essence, the workflow began as follows. Protein
extraction and trypsin treatment. Each sample was
treated with a protease/phosphatase inhibitor (Thermo
Fisher, Norristown, PA, USA) at a 1X concentration.
After lyophilization, samples were resuspended in 8 M
urea and 25 mM ammonium bicarbonate at pH 8§,
followed by ultrasonic homogenization for 1 minute at
50% amplitude with 10-second pulses in a cold bath.
Debris were removed through centrifugation at 21,000 x
g for 10 minutes at 4°C. Protein quantification was
carried out using Qubit Protein Assay reagent (Thermo
Fisher, Norristown, PA, USA). Preparation for mass
spectrometry (MS). Proteins underwent
chloroform/methanol  extraction, as  previously
described [92]. Following equilibration, centrifugation,
and removal of the supernatant, the protein pellet
underwent thrice washing with cold 80% acetone and
was subsequently dried. The pellet was then
resuspended in 30 pL of a buffer made of 8§ M urea, 2%
SDS, 2% deoxycholate in 25 mM ammonium
bicarbonate pH 8. Reduction of proteins’ disulfide
bonds was carried out by incubating the samples for 30
min with dithiothreitol (DTT), followed by alkylation
(by incubating the sample for 30 min with 25 mM
iodoacetamide). Then, the samples were diluted 8 times

with 25 mM ammonium bicarbonate pH 8, and digested
with sequence quality trypsin (Promega, Madison, WI,
USA) in a 1:50 ratio, overnight at 37°C. Clean Up Sep-
Pak C18 Spin Columns (Sigma-Aldrich, Saint Louis,
MO, USA) were employed for cleanup, and the
resulting clean peptides were dried. Database searching
tandem mass spectra. This was extracted by Tims
Control version 2.0 (Burker Daltonic Billerica, MA,
USA). Charge state deconvolution and deisotoping were
not performed. All MS/MS samples were analyzed
using PEAKS Studio (Bioinformatics Solutions,
Waterloo, ON Canada; version 10.5 (2019-11-20)).
PEAKS Studio was set up to search the
(UniProt_SwissProt) database (21040 entries) assuming
an efficient trypsin digestion. PEAKS Studio was
searched with a fragment ion mass tolerance of 0,050
Da and a parent ion tolerance of 50 PPM.
Carbamidomethyl of cysteine was specified in PEAKS
Studio as a fixed modification. Deamidated of
asparagine and glutamine, oxidation of methionine,
acetyl of the n-terminus and carbamyl of lysine and the
N-terminus were specified in PEAKS Studio as variable
modifications.

LFQ and differential expression analysis

Individual identification reports from PEAKS were
concatenated, and missing values (NA) results were
imputed by MICE [93]. To determine which proteins
were differentially and significantly expressed in the
treatment contrast we applied a Wald test to data with a
Benjamini-Hochberg correction using Deseq2 [94]. Any
protein associated with p-adjust <0.05 was considered
significant. ~ Graphic representations related to
quantification results were created using statistical
environment R v.3.6.0 [95] with EnhancedVolcano
[96], Complex Heatmap v.2.0.0 [97], GOplot [98] and
base packages of R.

Bioinformatic analysis

The proteomic dataset including UniProt identifiers and
logFC values of identified proteins in mass
spectrometry was submitted to ingenuity pathway
analysis (IPA). Networks, functional analyses and
pathways were obtained through the use of IPA
(QIAGEN Inc., https://digitalinsights.qiagen.com/IPA)
[99]. Core analysis was performed with the following
settings: (i) indirect and direct relationships between
molecules, (ii) based on experimentally observed data,
and (iii) all data sources were admitted from the
Ingenuity Knowledge Base.

Statistical analysis

To evaluate differences between groups, normality was
first assessed using the Shapiro-Wilk test (o = 0.05),
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and homoscedasticity was evaluated using Levene’s
test for normally distributed data or the Fligner-Killeen
test for non-normal data (o = 0.05). Outliers were
detected using the interquartile range (IQR) method
and were either removed or transformed. Group
comparisons were performed with two-tailed #-tests for
normally distributed data with homoscedasticity. Non-
normally distributed data were analyzed with non-
parametric tests, such as the Mann-Whitney U-test. For
repeated measures data, normality was assessed per
block using the Shapiro-Wilk test, and homogeneity of
variances was evaluated with Levene’s test. If data met
normality  assumptions and  variances  were
homogeneous, a repeated-measures ANOVA was
performed to evaluate the effect of time (blocks) and
group differences. In cases where data deviated from
normality, a non-parametric alternative, such as the
Friedman test, was considered. If significant
differences were detected, post-hoc comparisons were
conducted using the Tukey’s test for ANOVA or the
Dunn-Bonferroni for the Friedman test. All these
analyses were conducted using o = 0.05. The statistical
analyses and graphical representations were performed
using R (v 4.4.2) with the car (v 3.1-3), nlme (v 3.1-
162), and rstatix (v 0.7.2) packages, as well as the
GraphPad Prism software (v 8.0.1, GraphPad Software
Inc.).
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SUPPLEMENTARY MATERIALS
Supplementary Figures
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Supplementary Figure 1. Deposition of ThS reactive amyloid plaques in the brains of Tg2576 treated with blood from old
and young wild type mice. Representative images of the accumulation of ThS positive amyloid deposits in brains of blood treated
Tg2576 mice. The brain regions used for analyses included cortex (A, B, E, F) and hippocampus (A, B, I, J). Quantitative analyses of ThS
burden in cerebral cortical (C) and hippocampal (G) sections. Scale bars: 500 um. N = 5-7/group, (random mix of males and females; young
donor group: 3M/3F; old donor group: 3M/4F). Data values are expressed as mean = SEM. Data in (C) were analyzed using Student’s t-test,
and data in (G) were analyzed using the Mann-Whitney U-test.

WWwWw.aging-us.com 19 AGING



AB pathology atdifferentage points in TG2576 untreated animals
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Supplementary Figure 2. Time-course propagation of AB pathology in Tg2576 mice. This figure depicts the time-dependent
increase of amyloid pathology over time in the brain of Tg2576 mice. Tissues were collected in 300-, 450-, and 530-day-old Tg2576 mice.
Three different brain regions are enlarged for better visualization: cortex, dentate gyrus, and CA1. Scale bar: 200 um.
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Supplementary Figure 3. Quantification of ABao and ABaz levels in PBS and formic acid (FA) fractions from brain homogenates
of Tg2576 mice treated with young or old blood. ABs and A2 peptide concentrations were measured using ELISA in
different brain extract fractions. (A) AB4o concentration in the PBS fraction. (B) AB42 concentration in the PBS fraction. (C) ABaz/ABao ratio
in the PBS fraction. (D) AB4o concentration in the FA fraction. (E) ABs, concentration in the FA fraction. (F) ABs2/ABao ratio in the FA fraction. N
= 6-7/group, (random mix of males and females; young donor group: 2-3M/2-3F; old donor group: 2-3M/2—-4F). Data values are expressed
as mean = SEM. Statistical analysis was performed as follows: (A, D, E, F), Mann-Whitney U-test; (B, C), Student’s t-test.
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Supplementary Figure 4. Histopathological analysis of an astrocyte marker in the brain of Tg2576 mice infused with blood
from old and young wild type mice. Representative images displaying the presence of the astrocyte cell marker GFAP in the brain of
Tg2576 mice. The brain regions used for analysis included cortex (A, B, D, E) and hippocampus (A, B, G, H). Quantitative analyses of GFAP
burden in cerebral cortical (C) and hippocampal (F) sections are shown. Scale bars: 500 um. N = 5-7/group, (random mix of males and

females; young donor group: 3M/3F; old donor group: 3M/4F). Data values are expressed as mean + SEM. Data in (C, F) were analyzed
using Student’s t-test.
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Supplementary Figure 5. Proteomic pathways analysis of Tg2576 mice infused with blood from old and young wild type
mice. Pathway analysis of differentially expressed proteins in cAMP-mediated signaling, synaptogenesis signaling, and endocannabinoid
neuronal synapse pathways in the Old Blood and Young Blood groups. Pathway activation is represented by orange (activation) and blue
(inhibition) connections. Differentially expressed proteins within each pathway, with color-coded log expression ratios are displayed. Gene
names are used. N = 3/group, (random mix of males and females; young donor group: 1M/2F; old donor group: 1M/2F).

WWww.aging-us.com

23

AGING



Supplementary Data
Please browse Full Text version to see the data of Supplementary Data 1.

Supplementary Data 1.
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